
commercetools’
Resiliency

W
HI

TE
 P

AP
ER

January 2026

commercetools.com

commercetools’ Resiliency 2

What’s inside
Summary
Basic architecture
Cloud services
Regions and availability zones
APIs backed by microservices
Command Query Responsibility Segregation (CQRS) and data consistency
Multi-tenancy and tenant isolation
Security as a foundation of resiliency
Microservices vs. monoliths: Resiliency in practice
Single Points of Failure (SPOFs)
Traffic overload
Software bug or infrastructure misconfiguration
Stateless component failure
Database failing
Other services failing
Backup concept
Recovery concept
In-region recovery
Support
Support Services
Customer’s role
Continued resiliency
Appendix A: Glossary
Appendix B: Technical stack example

. 3
. 4

. 4
. 5

. 7
. 8

 . 10
. 12

. 13
 . 13

 . 13
. 14

 . 15
. 15

 . 16
. 17

 . 18
 . 18

. 21
 . 21

. 22
. 23
. 24

 . 25

https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.ynmkr5tcte6t
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.b55mhk3humj1
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.5dg09cupzk43
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.7t6g6kkygnok
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.pudcp7o0v4ok
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.s9dhmr4c4ij3
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.5iaiuro9hw5r
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.tkpivocsct6r
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.296m1qkdhx8d
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.bcoywmxjzk6g
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.2bim1ilup9lw
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.yd2xf0puv93i
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.drb5c8ryzm9m
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.tc8z0n3vhdwg
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.dsnkw65f2tnw
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.jt0duicd6v7n
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.dtl5glshbfh5
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.jted1r9hzt6c
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.4knp0u6ab8zw
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.hea7bmn7ix9x
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.gggmkr7taisr
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.6objfdfkon8e
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.joe3o68m47mr
https://docs.google.com/document/d/1oFIGUzMEE2a6y30s_z6JppitzxXycVtnd1NhfehyyEM/edit?tab=t.0#heading=h.ad0uo5wns7ke

commercetools’ Resiliency 3

Summary
This paper outlines how commercetools ensures resiliency across availability, scalability and
data recovery. Our platform has powered some of the world’s busiest commerce events —
Black Friday, Cyber Monday and major global launches — without disruption. Outages remain
exceptionally rare.

commercetools is a cloud-native commerce platform designed with a multi-tenant
architecture, versionless APIs, and an event-driven microservices foundation. It is engineered
to withstand failures, adapt to demand in real time and scale seamlessly to billions of API calls
per day while meeting strict SLAs.

Resiliency today goes beyond uptime. It means being secure by design, AI-ready, observable
and compliant with global regulations. This document explains the architecture behind
commercetools, our approach to redundancy, backup and recovery, customer support and
how we continue to strengthen resiliency in the age of agentic commerce.

commercetools runs on leading hyperscale providers, Google Cloud Platform (GCP) and
Amazon Web Services (AWS), ensuring access to their most resilient primitives: Multi-zone
deployments, distributed storage, global networking,and managed recovery services. This
multi-cloud strategy prevents lock-in and allows us to meet regional compliance requirements
while offering choice and redundancy.

We extend these provider capabilities with our own service mesh, zero-trust security model
and observability layer. The result is a unified commerce platform that takes advantage of the
reliability and scale of hyperscalers while incorporating platform-level controls for resiliency,
security and performance.

commercetools’ Resiliency 4

Basic architecture

Cloud services

commercetools is built on a multi-tenant, cloud-native, microservices-based architecture
designed to ensure high availability, elasticity and fault tolerance at a global scale. This
architecture represents the evolution from monolithic and single-tenant designs to an event-
driven, versionless API-first platform that’s resilient by default.

By embracing cloud-native design principles — container orchestration, service mesh,
distributed databases and immutable infrastructure — we deliver a platform that adapts
dynamically to demand while isolating failures to minimize customer impact.

commercetools’ Resiliency 5

Cloud service architecture enables the distribution of hardware infrastructure across the globe
via multiple regions. Our services were designed to be cloud-native, taking advantage of the
benefits of cloud service architecture. Each service in our software stack leverages a minimum
of three Availability Zones within each Region. This cloud deployment approach is inherently
resilient in protecting against application node failures. Leveraging this ability, hardware failure
is not an issue, as it’s automatically maintained and redundancies are kept by the cloud
provider.

Regions are independent geographic areas that consist of Availability Zones. Each Availability
Zone is a deployment area for cloud resources and should be considered a single failure
domain. These zones have distinct locations with independent network connections and power
supplies; however, zones within a region are strategically located to ensure round-trip network
latencies of under 1ms in the 95th percentile. Through Availability Zones, cloud deployments
achieve fully active-active availability within a region. Below is a visual example of how
Availability Zones are utilized within a Region.

Regions and availability zones

Availability Zone Availability Zone

Availability Zone

Region

Data
Center

Data
Center

Data
Center

Data
Center

Data
Center

Data
Center

Low latency
resilient fiber
connectivity

https://cloud.google.com/docs/geography-and-regions
https://cloud.google.com/docs/geography-and-regions

commercetools’ Resiliency 6

Within each specified region, a minimum of three times redundancy exists, ensuring that
individual services (applications, databases, etc.) are never interrupted, regardless of
hardware failures, system issues, or zone outages.

Each service application, database, or supporting infrastructure is deployed redundantly
across zones. For example:

Databases are replicated across AZs with automated failover.
Stateless services scale horizontally across Kubernetes clusters running in multiple zones.
Load balancers distribute traffic across regions and zones, ensuring that there is no single
point of failure.

Being in the cloud doesn’t leverage Availability Zones by default. Customers can choose to
deploy an on-premise application into a single zone in the cloud. If the application is not
architected/designed to be cloud-native, customers are sometimes locked into this type of
deployment model. Deploying an application this way would forgo some of the built-in
advantages the cloud can provide. The image below shows how Availability Zones function for
redundancy and availability.

Cloud-native by Design

Being “in the cloud” does not automatically mean resiliency. Legacy applications migrated
into a single cloud zone remain vulnerable to outages. commercetools avoids this pitfall by
being architected cloud-native from inception:

All core services are stateless where possible, relying on distributed storage and event
streams.
Stateful components like databases and queues are replicated across AZs with built-in
durability guarantees.
Infrastructure is codified with Infrastructure as Code (IaC) using Terraform, ensuring
reproducibility and rapid redeployment.

This design ensures that hardware failures, network disruptions or zone outages never result in
service disruptions for customers.

commercetools’ Resiliency 7

APIs backed by microservices

Every commercetools capability is exposed through an API, powered by its own microservice.
These services are deployed across regions using Kubernetes-based orchestration, with
dedicated compute, datastore and runtime environments. This design ensures:
Independent scalability: Each service scales horizontally based on its own workload profile.
Rapid delivery cycles: Teams deploy features and fixes on independent cadences without
disrupting other services.

Because commercetools APIs are versionless, upgrades and enhancements flow seamlessly
into production without breaking changes. Customers benefit from continuous innovation
without downtime or costly migrations.

Continuous delivery and observability
Resiliency also depends on how code reaches production. commercetools uses Continuous
Integration and Continuous Deployment (CI/CD) pipelines with automation, testing and
incremental rollouts. Key practices include:

Canary releases: Rolling out new functionality to a subset of traffic before global
deployment.
Automated rollback: Failing changes can be reverted in minutes.
Observability everywhere: Services emit metrics, logs and traces via OpenTelemetry,
feeding into real-time dashboards and alerting systems.
Chaos and resilience testing: Fault injection and recovery drills validate that services
degrade gracefully.

This automation ensures that changes enhance the platform without introducing instability.

Database sharding and resilient persistence
commercetools employs database sharding to achieve horizontal scalability. Instead of storing
all data in a single system, we partition (“shard”) the data into keyed partitions, distributed
across multiple nodes and disks. This approach enables the platform to process commerce
data at a global scale, handling workloads that exceed the capacity of any single machine.
Our primary data persistence is delivered via distributed, cloud-native databases with built-in
support for:

Elastic sharding for horizontal scaling as demand grows.
Replication across at least three Availability Zones per region.

Automated failover if a shard or node becomes unavailable.

commercetools’ Resiliency 8

Command Query Responsibility Segregation
(CQRS) and data consistency

To achieve both scale and resiliency, commercetools leverages the Command Query
Responsibility Segregation (CQRS) pattern, a proven architectural principle in distributed
systems. CQRS separates the handling of commands (writes) from queries (reads), ensuring that
each workload is optimized independently.
When an update request is made, for example, adding an item to a cart, the command is not
written directly to a single database. Instead, the request is transformed into one or more
domain events. These events are placed onto an asynchronous event stream, where
independent microservices consume and process them in parallel. This approach reduces
system load, decouples services and ensures that a localized failure doesn’t cascade across the
platform.

Resiliency by design in data layer
By combining sharding and replication, commercetools ensures that:

Write-intensive workloads (e.g., orders, carts) scale independently from read-heavy
workloads (e.g., product catalogs).
Strong consistency is guaranteed for critical transactions, while eventual consistency
powers asynchronous operations at scale.
Immutable backups and snapshots provide rapid recovery options in te event of data
corruption or catastrophic failure.

This approach allows commercetools to handle billions of API interactions daily without
compromising performance, reliability, or customer experience.

WriteCommand
Model

Query
Model

Client Event

Update

Read

Materialized
View

commercetools’ Resiliency 9

Resiliency benefits of CQRS
Failure isolation: Write operations (e.g., checkout, orders) and read operations (e.g.,
product catalog search) are decoupled. Issues in one workload don’t degrade the other.
Independent scaling: Write-heavy stores can be tuned for durability, while read-heavy
stores can be optimized for performance, caching and low latency.
Event-driven recovery: Because the state is derived from an event log, failed processes
can be replayed from the stream, allowing the system to self-heal and catch up without
data loss.
Asynchronous durability: Even under sudden spikes, such as flash sales or autonomous
agent-driven shopping, commands are queued safely and processed reliably, ensuring no
request is dropped.

Consistency models
commercetools supports both strong consistency and eventual consistency, depending on the
business use case:

Strong consistency (Read-After-Write.) Critical operations, such as payment
confirmation or inventory reservation, require that once a transaction is acknowledged, it’s
immediately reflected in the datastore. A read after a confirmed write always reflects the
latest state.
Eventual Consistency. For operations that can tolerate slight delays, such as product
search indexing or asynchronous catalog updates, changes are processed as events on a
queue. The API acknowledges the request, but downstream systems may take a short time
to reflect the update. Within seconds, the change propagates to all consumers.

This dual approach balances safety (for financial and transactional correctness) with scalability
(for high-volume, non-critical updates).

Why this matters for resiliency
By combining CQRS with multiple consistency models, commercetools can:

Handle millions of API requests per minute without bottlenecks.
Deliver sub-second response times for reads even under peak traffic.
Guarantee correctness where it matters most, while optimizing throughput for non-critical
operations.
Rapidly recover from partial failures by replaying event streams into fresh datastores.

https://docs.commercetools.com/api/general-concepts#strong-consistency
https://docs.commercetools.com/api/general-concepts#eventual-consistency

commercetools’ Resiliency 10

Multi-tenancy and tenant isolation

commercetools is multi-tenant by design, meaning that multiple customers share the same
infrastructure and services while maintaining complete logical and security isolation. This
model allows us to deliver resiliency at scale, ensuring that every customer benefits from the
same performance, updates and security controls.

Each tenant project is provisioned with a unique logical database within our distributed
persistence layer. While physical infrastructure (compute, storage, networking) is shared for
efficiency, all access is strictly isolated using tenant-specific API credentials, authentication
layers and authorization policies. This guarantees that no customer has visibility into another
customer’s data or workloads.

commercetools’ Resiliency 11

Why commercetools avoids one-off deployments
Single-tenant or custom deployments create operational fragility: Performance issues,
delayed updates and inconsistent resiliency guarantees. By operating a unified, multi-tenant
architecture, commercetools ensures:

Every customer benefits equally from resiliency engineering, chaos testing and incident
response drills.
Global uptime guarantees are enforceable and transparent.
Platform improvements compound over time, strengthening resiliency for the entire
customer base.

Scalability without fragmentation: Unlike single-tenant deployments, where each
environment must be scaled separately, multi-tenancy allows us to pool resources
and automatically distribute them across customers. This enables elastic scaling up to
billions of requests per day while maintaining predictable performance.

Continuous improvements for all: Because all tenants run on a shared platform,
every fix, performance optimization and resiliency enhancement benefits all
customers immediately. There are no one-off deployments or lagging upgrade cycles.

Noisy neighbor protection: Misbehaving tenants, such as those generating
excessive load, are automatically identified through real-time monitoring and QoS
controls. Rate limiting and load shedding mechanisms reduce one tenant from
degrading the experience of others.

1

2

3

Resilient by default: Multi-tenancy amplifies resiliency by removing brittle, custom
deployments. Customers share a hardened, tested, and continuously validated
platform instead of isolated, bespoke instances.

4

Resiliency advantages of multi-tenancy

commercetools’ Resiliency

Security as a foundation of resiliency
At commercetools, resiliency and security are inseparable. A platform cannot be resilient if it’s
vulnerable, and it can’t be secure if it’s fragile. That’s why commercetools is engineered with
security-by-design principles that are deeply embedded in our cloud-native architecture.

Zero-trust service mesh
All microservices within commercetools communicate through a zero-trust service mesh. Every
request between services is authenticated, authorized and encrypted, ensuring that no traffic
inside the platform is ever assumed to be trusted by default.

Encryption everywhere
In transit: All API and service communications are secured with TLS 1.3.
At rest: Data is encrypted with AES-256 across databases, storage and backups.
Keys: Managed through cloud-native KMS (Key Management Service) with rotation
policies.

Automated compliance and governance
The platform continuously meets and maintains global compliance standards, including SOC 2
Type II, ISO 27001, GDPR and CCPA. Built-in monitoring and reporting systems provide:

Continuous compliance checks for misconfiguration drift.
Audit trails for every action through immutable logs.
Automated enforcement of security controls across regions.

Supply chain and runtime security
Immutable containers: Services run in signed, verified Docker images.
Dependency scanning: Every build undergoes automated scanning for CVEs and
vulnerabilities.
Runtime monitoring: Anomalous behaviors are flagged in real time using observability tools
and AI-based anomaly detection.

Shared responsibility, minimized risk
Unlike traditional on-premises systems, where customers must secure the full infrastructure
stack, commercetools minimizes the customer’s burden:

Customers focus only on securing their integrations and frontend applications.
commercetools manages infrastructure hardening, service patching and incident
response.
Regular penetration testing and chaos-security drills validate both defenses and recovery
procedures.

12

commercetools’ Resiliency 13

Resiliency through security
By embedding security into every layer — network, data, application and operations —
commercetools reduces the risk of disruptions caused by misconfigurations, breaches or
vulnerabilities. Security isn’t bolted on; it’s the foundation of our resiliency strategy.

Microservices vs. monoliths: Resiliency in practice
Resiliency at commercetools begins with architecture. Unlike monolithic systems, where a
single failure can bring down the entire application, our platform is composed of independent
microservices. Each service owns its own runtime, datastore and scaling logic, and
communicates with others via secure APIs and event streams.
This isolation ensures that when one service fails, others continue operating without disruption.
For example, if the Import API experiences a fault, it may temporarily affect data imports, but
Orders, Checkout and Search continue to function normally. The impact radius is minimized,
protecting the broader commerce experience.

Single Points of Failure (SPOFs)
Even in microservice architectures, certain services are critical for the platform as a whole.
Authentication is one such example: All API requests must be validated to protect customers
and data. If authentication were unavailable, other services would still technically run, but all
requests would fail authorization.

Traffic Overload
Traffic overload is one of the primary resiliency challenges for any multi-tenant SaaS platform.
In commerce, demand can surge unpredictably — whether during Black Friday flash sales, viral
product drops or increasingly, traffic generated by autonomous shopping agents. A resilient
architecture must not only withstand these spikes but do so without degrading the experience
for other tenants.

At commercetools, services are intentionally operated well below maximum utilization during
normal load, maintaining headroom that acts as the first line of defense against unexpected
bursts. Our stateless Kubernetes clusters scale elastically, bringing new nodes online in under
two minutes and new pods in seconds. Databases and persistence layers are also configured
for horizontal scaling, with built-in replication and auto-scaling to absorb sustained growth.

Caching is used strategically to minimize pressure on core services. Frequently accessed data
is cached both internally and at the edge, close to customers, reducing round-trip latency and
offloading repeated queries. Write operations, which cannot be cached, are intelligently
distributed across shards and zones to prevent hotspots and maintain throughput under heavy
load.

commercetools’ Resiliency 14

For non-critical or latency-tolerant operations, commercetools relies on asynchronous
background processing. Tasks are queued rather than executed in-line, allowing core APIs to
respond quickly while downstream systems process workloads in batches. This queuing
mechanism not only smooths load but also enables automatic retries if a process fails, ensuring
durability without blocking the user experience.

Software bug or infrastructure misconfiguration

Even the most resilient systems can be threatened by errors introduced through new code or
infrastructure changes. At commercetools, we apply a multi-layered approach to ensure that
neither software bugs nor configuration missteps disrupt production environments.

Software bug
Every code change is subjected to rigorous peer review and automated testing before it can
progress. Reviews require multiple approvals to ensure independent validation, while test
pipelines encompass unit, integration, regression and contract testing across microservices.
Security checks are integrated early in the process, utilizing automated scans to identify
vulnerabilities and dependency risks. By combining peer oversight with automated assurance,
we significantly reduce the likelihood of flawed code reaching production.
Deployment practices are designed to further minimize risk. commercetools follows a
continuous integration and continuous deployment (CI/CD) model where small, incremental
changes are promoted multiple times per day. Each release passes through staging
environments for validation, and higher-risk changes are introduced through progressive
delivery techniques, such as canary deployments. In this model, only a small percentage of
production traffic is initially exposed to a new change, and the rollout expands only after real-
time metrics confirm stability. Should an issue be detected, our pipelines allow us to instantly
roll back to a previously validated version, often in a matter of minutes.

Infrastructure misconfiguration
Infrastructure changes are treated with the same discipline as application code. All
configurations are defined in version-controlled Infrastructure as Code (IaC) using Terraform.
This ensures that environments are reproducible and consistent across regions. If a
misconfiguration occurs, we can revert to a previous version with precision. In critical
situations, controlled manual interventions are possible, but they are always executed by at
least two engineers to prevent human error. Automated drift detection monitors for unintended
configuration changes, alerting teams and restoring compliance when deviations occur.

commercetools’ Resiliency

Stateless component failure
A cornerstone of commercetools’ resiliency strategy is the principle of statelessness. Services
that handle API calls are designed without dependency on local state, meaning they can be
terminated, restarted or rescheduled without losing data or disrupting ongoing processes. This
stateless approach ensures that failures are transient events, not systemic outages.

All stateless services run on multi-zone Kubernetes clusters, Amazon EKS for AWS regions and
Google GKE for GCP regions. If a container fails due to a hardware fault or software issue,
Kubernetes automatically removes it from the load balancer, spins up a healthy replacement
and resumes traffic handling within seconds. Because no local state is tied to the failing
instance, customers experience no data loss and only the in-flight requests handled by the
failed node are impacted.

Resiliency extends beyond individual pods or nodes. If an entire availability zone experiences
an outage, the global load balancer instantly redirects traffic to healthy zones. commercetools
maintains buffer capacity in every zone so that this redirection can occur without overloading
the remaining resources. Kubernetes then automatically scales out additional capacity to
restore the original resource balance and recover redundancy. This combination of zonal
redundancy, elastic scaling and automated healing ensures that even zone-level failures have
minimal impact on customer workloads.

The use of a service mesh across microservices adds another layer of resiliency. Health checks,
retries and circuit breakers are applied consistently, ensuring that failures are detected and
routed around quickly. Combined with observability pipelines, these mechanisms allow the
platform to detect and mitigate issues in near real-time.

Database failing
Data availability is fundamental to resiliency, and commercetools is designed to withstand
database failures without impacting customer operations. Our persistence layer is built on
cloud-native distributed databases that are deployed in multi-zone clusters across every
region. Each cluster spans at least three independent availability zones, ensuring that a failure
in one zone can be absorbed seamlessly by the others.

When a node or zone experiences disruption, traffic is automatically redirected to healthy
replicas. This process is fully automated and happens within seconds, maintaining continuity
without manual intervention. Because data is synchronously replicated across nodes, reads
and writes continue with minimal latency, even during failover events. Customers experience
uninterrupted service, with only a small fraction of in-flight requests needing retries.
Our architecture also leverages event-driven design, allowing the state to be rebuilt from event
streams in cases where rehydration is faster or more precise than snapshot restoration. This
capability is particularly valuable in scenarios where downstream indices or derived data
stores, such as search, need to be reconstructed quickly.

15

commercetools’ Resiliency 16

Other Services Failure
Beyond databases and application services, commercetools relies on a range of supporting
components load balancers, messaging queues, object storage and content delivery networks,
that are critical to maintaining overall resiliency. Rather than building and maintaining these
complex systems in-house, we leverage cloud-native, state-of-the-art managed services from
hyperscale providers. This approach allows us to take advantage of their proven durability,
multi-zone distribution, and continuous investment in resiliency engineering.

Resiliency is not assumed; it’s continuously validated. commercetools integrates these
managed services into our observability pipeline, where health checks, error rates and
latencies are monitored in real-time. Any degradation in a provider service is detected quickly
and triggers automated routing, retries or failover to alternate zones or components. In some
cases, we maintain multi-provider strategies, ensuring that even systemic cloud-level issues
can be mitigated by switching to equivalent services in other regions or providers.

commercetools’ Resiliency 17

Backup concept

At a high level, a commercetools solution consists of data, infrastructure, and the application
itself. A guiding principle behind our approach is to build solutions that can function as
stateless as possible, as this is a key driver for scalability, reliability, and resiliency.
Consequently, data backup is the core element of commercetools’ backup and recovery plan.

A significant portion of our data is stored in MongoDB databases. Any other data-handling
technology of the platform is dependent on that data. commercetools performs full database
backups. In addition, disk snapshots and hot incremental backups are performed.

The disk snapshot process is fully automated and occurs every two hours for the last two days
and daily for 30 days. We make a fully encrypted copy of all persisted data and replicate it
within the same compliance geography.

Check full details on how we manage backups.

https://docs.commercetools.com/offering/backups

commercetools’ Resiliency 18

Recovery concept

While our backups are performed automatically, the data recovery process is manual. This is
because each individual incident is unique and requires different actions to ensure that the
services are restored appropriately. Whatever the incident, we are held to our SLAs for RPO and
RTO to ensure the timely restoration of functionality.

Check our full SLAs

In-region recovery
As mentioned earlier, we work diligently to prevent issues from entering production. However,
in the rare cases where an issue does make it into production mitigating the problem before
customers are aware of or impacted by it.

If a version rollback isn’t an available solution, we may need to create and deploy a fix for the
issue. While the time required to create a fix varies, deployment of the fix can be done within
minutes.

In rare circumstances, a critical issue could require the redeployment of a service within the
region where the issue exists. The complexity of this depends upon the service and will follow a
similar path as multi-regional recovery, but isolated to the affected service.

Data recovery
We leverage the disk snapshots to expedite the recovery process of customer data. These
snapshots will then be directly converted into a new virtual disk within any region and zone of
the same cloud provider on the same continent and directly attached to a new MongoDB
cluster. Leveraging native cloud services eliminates the need to install or sync any data during
recovery, expediting the overall process.

Any other data, such as platform configuration data, is stored within a Git repository. This
information is replicated live across multiple data centers and is pulled directly into the newly
set up persistence.

https://docs.commercetools.com/offering/sla
https://docs.commercetools.com/offering/sla

commercetools’ Resiliency 19

Infrastructure recovery
All infrastructure details are managed through Terraform and tracked through Git repositories.
These Terraform files allow for bootstrapping all MongoDB virtual machines, Kubernetes
clusters, ElasticSearch services and all other resources through the execution of a Terraform
script against the new cloud region.

As part of the regional setup, Terraform specifications are stored in a Git repository that is
replicated live across multiple data centers and tracked. Any deviations from the default
configurations required to run this particular platform are deployed directly to the new region.

Applications recovery
Once all infrastructure is provisioned and the snapshots are converted to virtual disks, the
process of installing commercetools microservices begins.

Deploying microservices follows an automated process similar to the standard CI/CD
deployment for all changes. During the standard CI/CD process, the deployment retrieves a set
of Helm charts from the commercetools Git repositories. These Helm charts contain all details
on how to deploy a specific microservice along with instance-specific scaling parameters.
Executing these Helm charts includes the following:

1.Building Docker containers.
2.Sending containers to docker registry.
3.Deploying docker containers to Kubernetes.
4.Configuring Kubernetes.

The docker registry backs up all containers to Google Cloud or AWS storage, as applicable and
replicates them across all regions. In a disaster recovery scenario, instead of leveraging these
backups, the process bypasses steps one and two. This deployment pattern is significantly
faster when deploying all microservices.

Search recovery
A special case within the commercetools application is the Search feature. Various
Elasticsearch setups are used to drive internal services, but more importantly, they also power
product search and Merchant Center services. ElasticSearch is being used as a key technology
for that.

The commercetools ElasticSearch indices are derived from the MongoDB product databases
as outlined above. Once the core application, including ElasticSearch, is up and running, a
sync job between MongoDB and ElasticSearch is triggered to rebuild all search indices.

commercetools’ Resiliency 20

Cutover
The new region will reuse all of the failed regions’ projects, configurations and settings. The
final step will be to route all DNS records to the new instance. This routing takes place within
the cloud provider and does not rely on DNS propagation. The traffic will immediately be
routed to the new installation.

All URLs, Keys and Secrets will remain. Calling applications will not require modification and
should begin functioning as expected after the cutover. Depending on the implementation of
individual clients, a reboot may be necessary to reconnect them.

commercetools’ Resiliency 21

Support

commercetools’ support organization is globally staffed with highly skilled full-time engineers
who provide 24/7 incident communication, providing our customers with a single point of
contact that covers all of our products.

Using best-of-breed tooling in an integrated setup of support, SRE and engineering teams,
automated alerting processes and employee schedules are skillfully managed. Internal process
definition and process automation tooling are continuously improved with learnings from every
incident.

Check our full support offering.

Support Services
We are committed to providing our customers with all the support they need to achieve their
eCommerce objectives. In the case of a service interruption, customers can monitor the status
of our products via our status page. This page also allows users to register for proactive
notification of incidents or degradations in their respective hosting Regions. New issues can be
reported via our support channels, which guide users and ensure the right escalation is
immediately triggered.

When problems are detected in an individual tenant's usage patterns through commercetools’
automated status monitoring processes and on-call rotations, the support team proactively
reaches out to the escalation contact provided by the customer. We strongly recommend that
customers regularly update their emergency contact information through their Customer
Success Manager (CSM).

As part of our culture of continuous improvement, internal incident post-mortem meetings are
held consistently to cover process and technology learnings, which leads to a reduction in
future incidents and further resiliency.

https://docs.commercetools.com/offering/support
https://docs.commercetools.com/offering/status
https://docs.commercetools.com/offering/support#support-channels

commercetools’ Resiliency 22

Customer’s role

As with any provided software, there are things that the customer can do to leverage and
improve commercetools’ resiliency:

1.Create and maintain an updated list of services and programs that interact with
commercetools and/or online commerce.

2.Create and maintain a list of dependencies.
3.Connect with a Customer Service Manager (CSM) regularly.
4.Document the HA/DR features and specs of all services in the solution.

a.E.g. Google Cloud, AWS and MongoDB have built-in HA/DR systems
b. If an external search is used, determine the provider’s fail-safes and plan accordingly.
c. If an external PIM is used.
d. If external promotions are used.
e. If external discounts are used.
f. If there is integration with a CRM, etc.

g. If tertiary services from the frontend are used.
5.Work with CSM and Professional Services to determine which areas might create issues.
6.Create an internal HA/DR plan of action.

a.Be aware of the built-in backup frequency for each component in the solution.
i.Provided backups may not have been designed to be utilized for internally

triggered systemic issues that might cause service interruptions, such as
accidentally pushing code with errors.

b.The best practice is to augment these backups with an internal backup protocol based
on individual needs.

7. Implement regular training on best practices.
a. If a new person is not trained on what to do in the event of an issue, it can:

i.Result in errors that exacerbate the situation and possibly cause an outage.
ii.Significant delays in the recovery of service.

8.Create a list of all providers to contact.
9. Inform all providers, including commercetools, as soon as possible when a technical issue

arises.
10.Update contact information for all vendors at least quarterly and set up automatic

reminders to ensure the data is always up-to-date.

commercetools’ Resiliency 22

Continued resiliency

commercetools is continually improving the scalability, availability and resiliency of our
products. Leveraging modern deployment technologies along with our agile mindset and
processes allows us to deliver updates to all of our customers quickly. Our product-centric
culture is committed to ensuring that all our products are reliable, highly available, and resilient.

We look forward to building a better commerce portfolio for you.

commercetools’ Resiliency 24

Appendix A: Glossary
Availability. APIs and application data are responsive and functioning optimally, typically
described in terms of uptime. commercetools measures Availability by sending test requests at
regular intervals for the targeted product. The results of such measurement are available at Status
Updates.

Active/Active. Two instances of the software product running simultaneously. In the event that
one goes down, traffic is automatically routed to the other instance. Least possible losses.

Active/Passive. Two instances of a software product, one running and the other passively
updating at determined increments. In the event of an outage, the passive instance starts up and
traffic is routed to it. the last synchronization period. If that sync was 10 minutes prior to the
outage, then 10 min will be lost.

Customer data backup. The ongoing, frequent or real-time backup of the customer’s data is
solely the responsibility of the customer.

Disaster recovery. An organization’s ability to respond to and recover from an event that
negatively affects business operations.

Downtime. The percentage of the overall time during which the service is unavailable.

High availability. The ability of a system to operate continuously without failure for a designated
period of time.

Resiliency. The ability of an application to react to problems in one of its components and still
provide the best possible service.

RPO. Recovery point objective. The maximum amount of data, as measured by time, that can be
lost after a recovery from a disaster.

RTO. Recovery time objective. The duration of time and the service level within which a business
process must be restored after a disaster in order to avoid unacceptable consequences
associated with a break in continuity.

System backup. Backups performed by commercetools on a periodic basis are point-in-time
snapshots of the platform and the customer’s data.

Uptime. Percentage of the overall time that a service is running and available (e.g., 99.9%).

https://status.commercetools.com/
https://status.commercetools.com/

Cloud environments Google Cloud / AWS

Container-orchestrator Kubernetes (EKS for AWS and GKE for Google Cloud)

Programming languages Scala

Runtime environment JVM

Database MongoDB Atlas

Message service AWS SQS

Testing framework ScalaTest / Cornichon

CI/CD TeamCity / CircleCI

Monitoring Kibana, Prometheus, Grafana, Pingdom, Pagerduty

Extra dependencies Akka streams, Cats effect, Unfiltered, Scalafmt, Scala
Steward

commercetools’ Resiliency 25

Appendix B: Technical stack example
While our services are independently developed, we have common tech stacks. Here’s an
example tech stack from one of our services:

commercetools’ Resiliency

About commercetools
commercetools is the leading composable commerce platform, allowing companies to
dynamically tailor and scale shopping experiences across markets. We equip some of the
world’s largest businesses with tools to future-proof digital offerings, reduce risks and costs,
and build outstanding experiences that drive revenue growth.

Headquartered in Munich, commercetools has led a global renaissance in digital commerce by
combining cloud-native, technology-agnostic, independent components into a unique system
that addresses specific business needs. We empower brands — including Audi, Danone,
Eurorail, NBCUniversal, Sephora and Volkswagen Group — to stay ahead of changing consumer
and buyer behavior.

More information at commercetools.com.

AMERICA

Boston
APAC

Melbourne
EMEA

Berlin | London | Munich | Valencia

https://commercetools.com/

