
commercetools’
Resiliency
commercetools.com

https://commercetools.com/

Content
commercetools’ Resiliency

Summary ���3

Basic Architecture ���4

Cloud Services ���4

Regions and Availability Zones ���5

Independent APIs Backed by Microservices ��� 7

Database Sharding ���8

Command Query Responsibility Segregation (CQRS) ���9

Multi-tenancy �� 10

Cloud Service Security �� 11

Microservices vs. Monoliths: Resiliency Within �� 11

Measures Against Single Points of Failure ���12

Traffic Overload ���12

Software Bug or Infrastructure Misconfiguration ���13

Software Bug ���13

Infrastructure Misconfiguration ���14

Stateless Component Failure ���14

Database Failing ���14

Other Services Failing ���15

Backup Concept ���15

Recovery Concept ���16

Support ���19

Support Services ���19

Customer’s Role ���20

Continued Resiliency ���21

Appendix A: Glossary ��� 22

Appendix B: Technical Stack Example ��� 23

About commercetools ��24

Contact Us ��24

commercetools’ Resiliency 2

Summary

In this document, we demonstrate the resiliency of commercetools in both service availability
and data recovery. Our products have supported companies through multiple Black Fridays,
Cyber Mondays, dedicated product launches, and all the days in between. Through all of
this, product outages are extremely rare.

commercetools’ portfolio is divided into several SaaS products. Each product is built and
delivered natively in the cloud as a multi-tenant service. This approach toward software
design and development is fundamental to how we build and deliver products. Each of
these products comes with an SLA and is built via a combination of microservices, and the
functionality is accessible via API and business user tooling. commercetools has dedicated
years to building a scalable, robust, and secure set of products that are available in a diverse
set of geographical regions and are resilient against issues and outages. In the following
document, we explore the basic architecture of the commercetools solution, identify key
aspects in the microservices approach we follow, explore our backup and recovery concepts,
and describe our outstanding customer support services. At commercetools we are
confident in our products, and by the end of this document, we hope you feel confident in
them, too.

commercetools’ Resiliency 3

Basic Architecture

This section details the multi-tenant, cloud-native, microservice architecture deployed by
commercetools. This architecture follows the current industry best practices and allows us to
be fast and flexible in our design and resilient against failures. The image below demonstrates
the forward evolution of software architectures, including commercetools’ microservices-
based, cloud-native architecture.

Cloud Services

Cloud service providers supply a built-in toolkit of highly-available and scalable components
that can be leveraged to create complex products. commercetools offerings are available in
Google Cloud Platform (GCP) and Amazon Web Services (AWS). The image below provides a
brief overview of how the commercetools’ architecture works together in unison.

Managed
Hosting

• Hosted single-tenant
 monoliths

Old Platforms,
New Tooling

• New tooling tooling on
 top of legacy platforms
• “Cloud” used for marketing
• Single-tenant

Commerce Platforms
Deployed to IaaS or PaaS

• Take legacy platform and
 deploy it to IaaS or PaaS of
 your choice
• Some elasticity benefits but
 still not “cloud native”
 architecture

New Cloud-based
Monolithic Solutions

• Multi-tenant but still
 monolithic
• Newer platforms built
 natively for cloud
• Target smaller businesses
 – not enteprises
• Targeting primarily
 browser-based webshops
• Metered billing model,
 limited elasticity

Microservices-based
Cloud Native

• Independently consumable
 APIs backed by microservices
• Multi-tenant
• Cloud Native-style
 architecture
• Enterprise-focused
• Metered billing model
• Infinite elasticity
• Self-service sign-up for
 services
• Similar to public cloud models

1 2 3 4 5

Business User Tooling

SDKs

APIs

Get Cart by ID

Provided entirely by

Consumed as a Service

Application Development

Application Packaging

Container Orchestration

Infrastructure

Security

Load Balancing

API Management

High Availability

Monitoring

Backup/Restore

Routine Upgrades

commercetools’ Resiliency 4

As a customer, you can deploy services that integrate with our offerings, like a front-end,
in the cloud vendor of your choosing. These cloud-native services are designed and
maintained by the providers and other expert software companies. The cloud provides more
resilient performance and allows for significant cost and time savings.

Regions and Availability Zones

Cloud service architecture enables the ability for hardware infrastructure to be distributed
across the globe via regions. Our services were designed as cloud-native to take advantage
of the benefits of cloud service architecture. Each service in our software stack leverages a
minimum of three Availability Zones within each Region. This cloud deployment approach
is inherently resilient in protecting against application node failures. Leveraging this ability,
hardware failure is not an issue, as it is automatically maintained, and redundancies are kept
by the cloud provider.

Regions are independent geographic areas that consist of Availability Zones. Each
Availability Zone is a deployment area for cloud resources and should be considered
a single failure domain. These zones have distinct locations with independent network
connections and power supplies; however, zones within a region are strategically located to
nsure round-trip network latencies of under 1ms in the 95th percentile. Through Availability
Zones, cloud deployments have a fully active/active availability within a region. Below is a
visual example of how Availability Zones are utilized within a Region.

Data Center

Low latency resilient
fiber connectivity

Data Center

Data CenterData Center

Availability Zone Availability Zone

Availability Zone

Data Center Data Center Data Center

Region

commercetools’ Resiliency 5

https://cloud.google.com/docs/geography-and-regions

Being in the cloud does not leverage Availability Zones by default. Customers can choose
to deploy an on-premise application into a single zone in the cloud. If the application is not
architected/designed to be cloud-native, customers are sometimes locked into this type
of deployment model. Deploying an application this way would forgo some of the built-in
advantages the cloud can provide. The image below shows how Availability Zones function
for redundancy and availability.

Within each specified region, a minimum of 3x redundancy exists, ensuring that individual
service (application, database, etc) is never interrupted regardless of hardware failures,
system issues, or zone outages.

End User Elastic Load
Balancing

Web Server Appplication Server Database Server

Replicated
Data Layer

Ability to
fail over

Avoid unnecessary
dependencies

Availability Zone A

Availability Zone B

1

2

2

commercetools’ Resiliency 6

Independent APIs Backed by
Microservices

Our product features are delivered via independent APIs backed by microservices. Each
microservice is deployed into the cloud region using Kubernetes and maintains its own
application layer, datastore, and infrastructure. This architecture enables expert teams to
deploy updates through independent development and release cycles resiliently and quickly,
as demonstrated in the image below.

We have also implemented Continuous Integration and Continuous Deployment (CD/CD)
pipelines for our services. This approach enables us to leverage automation and lifecycle
monitoring to simplify the process of delivering code changes to production and allow for
safe deployment to production within minutes.

Multiple releases/day to production

Infrastrucuture

Datastore

Application

Infrastrucuture

Datastore

Application

Infrastrucuture

Datastore

Application

Products Search etc…

commercetools’ Resiliency 7

Database Sharding

Database sharding enables on-demand, horizontally scalable data infrastructure. Distributed
systems process and store data in capacities that far exceed the capabilities of any commodity
virtual machine. Distributed system architectures commonly partition data, or shard, data into
“keyed partitions” distributed over a vast number of virtual machine instances and disks.
We leverage MongoDB Atlas for our database needs. MongoDB Atlas is a fully-managed,
cloud-native, document database-as-a-service with elastic scalability that inherently
supports sharding and replication, as demonstrated in the image above. We distribute load
across multiple shards, and if load increases, we can increase our ability to handle database
interactions by adding additional database instances. MongoDB Atlas is also a multi-could
and multi-region offering that leverages at least three Availability Zones in a region, ensuring
continued resiliency.

Project

0 - 1000 1000 - 2000 … 9999 - …

Carts Products Orders

commercetools’ Resiliency 8

Command Query Responsibility
Segregation (CQRS)

We leverage the power of Command Query Responsibility Segregation (CQRS) design
patterns, which operate under the principle that data is not written the same way it is stored
and read. With this pattern, any incoming update requests are processed and turned into
multiple events that are received by independent microservices for asynchronous handling.
This allows for minimal load and maximum resiliency.

CQRS dramatically enhances our availability by allowing each datastore to scale according to
its own use case-specific needs. Datastores that handle writes are configured very differently
from datastores that handle reads. By separating reads from writes, we maintain optimal
availability and scalability. This process is demonstrated in the image below.

Our architecture also takes advantage of two types of data consistency: strong consistency
and eventual consistency. With strong consistency, also known as read-after-write
consistency, changes are immediately reflected after the API returns a response code. So an
immediate read request will reflect the change.

With eventual consistency, when an API call performs a modify action on an entity, following
the CQRS design pattern, the request is processed, queued, and eventually sent out as an event
for handling. The API returns a response code before the changes are processed. An immediate
read request may or may not reflect the change, though in time the change will be reflected.

Leveraging two types of data consistency allows us to minimize load and handle many billions
of API requests resiliently.

Client Event

Write

Read

Materialized
View

Command
Model

Query
Model

commercetools’ Resiliency 9

https://docs.commercetools.com/api/general-concepts#strong-consistency
https://docs.commercetools.com/api/general-concepts#eventual-consistency

Multi-tenancy

Our products are multi-tenant by design, meaning that multiple customers share the same
infrastructure and application resources but do not have access to other customers’ data. To
achieve this, each tenant project is provisioned with a unique logical database in our shared
MongoDB instances upon creation. The logical databases share the same infrastructure
resources but are otherwise separate. We then manage access to these logically separated
projects via our API credentials. The image below offers a brief overview of single-tenancy vs.
multi-tenancy design.

Our multi-tenant system has much higher limits for scalability than a single-tenant system.
That said, there is always a limit, and a misbehaving tenant can hit these limits. To protect
other tenants, such cases are automatically identified, and we limit the number of resources
we dedicate to such a tenant (e.g. by shedding load). As we have a resilient, robust, and
secure multi-tenant solution, we do not do one-off deployments. This approach enables
us to ensure all of our customers in a region are receiving the same experience and all
customers immediately benefit from performance improvements and fixes. The image below
demonstrates the ways in which our multi-tenant solution is most beneficial for customers.

Single-Tenancy Multi-Tenancy

Dedicated Datastore

One company Multiple companies

Dedicated Application Instances

Shared Datastore

Shared Application Instances

Highest possible security - one stack to
manage, not one per tenant

Access functionality any time,
instantaneous elasticity

Higher availability -
globally distributed,
stack managed by
top professionals

Better support due to one codebase
for provider to support

Low TCO. Incremental licensing
model, no fixed overhead

Frequent
product
releases

commercetools’ Resiliency 10

Cloud Service Security

Cloud service deployments provide optimal environments and streamlined processes to
update services with significantly fewer assets to secure. This is also accomplished without
the considerable risk of on-premises infrastructure, facilities, and networks to protect,
manage, and fund. Our cloud-native services facilitate the rapid deployment of important
code revisions to a minimal scope of systems along with drastically reduced time from start to
finish for time-sensitive changes.

Our native cloud services significantly reduce the inventory of infrastructure software
to manage and protect with a small footprint of systems to secure, considerably less
than on-premises environments. We also avoid the risk of securing servers as hosts by
utilizing Kubernetes in the cloud. With our cloud-native services, customers no longer
need to oversee the vast scale and complexity of infrastructure, hardware, and scope of
vulnerabilities with on-premises services.

We remove the burden and risk of enterprise operations and security inherent with on-
premises systems, facilities, and software. Our customers no longer require the extensive
controls, effort, operations, monitoring, and management required to secure on-premises
products, upholding our standards of resiliency.

Microservices vs. Monoliths:
Resiliency Within

This section further details the resiliency of the microservice architecture deployed by
commercetools. In a microservice architecture, each microservice is isolated. This means
that a failure on one service may or may not impact the entire application. For example, at
commercetools, our Import API is a completely separate service from our Audit Log. Each
service maintains dedicated databases and runtime applications. They are connected in
that when a change is made with Import API, Audit Log records it. If the Import API has a
critical failure, it will cease to work because they are independent microservices. This failure
is painful for those leveraging the Import API functionality, but Audit Log will continue to
function tracking changes made by other services. Similarly, a shop will be unaffected by an
Import API or Audit Log service failure.

commercetools’ Resiliency 11

This is a significant advantage over monolithic designs, in which if any small piece of the
system has a critical failure, all components within the system are prevented from running.
The impact of failure situations can be minimized through microservice architecture by
breaking functionality into individual pieces. This also simplifies the development cycle, as
each piece is only meant to perform a specific task.

It is important to note that even in microservice architecture, there are some application
critical services that may not directly prevent another service from running but stop it from
functioning properly. These microservices are Single Points of Failure. An example of this
would be our Authentication service. All of our API calls must be authenticated. Not doing
so would obviously be a huge security risk. So if the Authentication service were to fail, all
other services would still run but could not authenticate. All API calls would respond but
with failure codes. In our case, this service is a Single Point of Failure. We highlight these
differences between monolithic and microservice architectures to demonstrate the resiliency
of microservices in the commercetools solution.

Measures Against Single Points of Failure

Given that microservice architecture can have Single Points of Failure services, we guard
against various scenarios via carefully crafted, resilient methodologies as outlined in the
following sections.

Traffic Overload

Traffic overload is always a concern for a multi-tenant SaaS product. Caching data is a
great way to lessen the burden of heavy traffic. We ask our customers to cache as much
information as possible, and we also do internal caching for reads. Of course, writes cannot
be cached, but they are distributed based on individual customer demands.

Even with safeguards, unexpected traffic spikes do happen. We have several preventative
measures in place to guard against traffic overload. To mitigate potential issues, we always run
our services with a buffer of resources. We try to keep resource usage to around 50% of the

Example graph of write requests color coded per project

commercetools’ Resiliency 12

available amount. This provides the first layer of defense against a traffic spike. Being cloud-
native allows us to auto-scale to quickly adapt to growing traffic. Our stateless Kubernetes
nodes can up-scale quickly (about 2 minutes for a new node and less for individual
applications). While our MongoDB Atlas databases take a bit longer to adapt, they can also
auto-scale when needed.

Additionally, we use background processing whenever possible. While in some cases it’s
critical that an API call synchronously processes the response, other work can be performed
asynchronously. This work can be put into a queue and handled via background processes.

The queued changes are not updated all in parallel. This approach would unnecessarily
tax the system. Instead, our background processes can pull updates off the queue in small
batches to lessen application load. In the case of a failure, the queuing mechanism enables
retries without impacting the other updates.

Software Bug or Infrastructure Misconfiguration

In any software application, a failure scenario can be introduced by a software bug or
infrastructure misconfiguration of the software. We have a multi-tiered methodology to guard
against these types of issues from affecting production environments.

Software Bug
First, we do code reviews on every change that is delivered. At a minimum, we need two
approvals on every code review. This ensures that at least two developers other than the
author have seen and verified the changes. Then we run extensive test runs before the
code is deployed to staging environments. These automated test suites validate new code
behavioral correctness and guard against behavioral regression.

Leveraging CI/CD methodology, we deploy multiple times a day with small change sets. First,
we deploy to a staging environment and validate. The validation of a change takes as long as
required. We will not rush a change into production.

After validation, we deploy to production. We have the ability to deploy the change to only
a subset of our overall traffic set. For example, we can deploy a change where only 1% of
our overall production traffic will encounter that behavioral change. Once the behavior
is validated, we can roll it out to a larger segment of the traffic base. Not all changes are
deployed incrementally, but this is a good way to ensure higher-risk changes have minimal
negative impact should an issue arise.

commercetools’ Resiliency 13

If a bug makes it into a production environment, we can quickly identify the change causing
the failure and roll it back to a working version. The process of rolling back to a working
version can be done in a matter of minutes.

Infrastructure Misconfiguration
Our infrastructure and configuration is versioned and applied during a deployment. Should a
misconfiguration be introduced, we can easily roll back to a previous version. For time-critical
situations, we can apply manual changes. These changes are always done with at least two
engineers managing the change.

Stateless Component Failure

We have also architected against a component or service within our product fail. Our
services (e.g. those handling API calls) are always stateless and deployed on a multi-zone
Kubernetes (EKS for AWS and GKE for GCP) cluster. This means that a single instance of
the service failing, due to a hardware failure or software bug, will only affect the API calls it
is currently handling. The failed instance will be quickly taken out of the load balancer and
replaced by Kubernetes.

If an entire availability zone fails, the load balancer will redirect the traffic to another
availability zone. Because we always keep extra resources on hand, this availability zone will
be able to handle the increased traffic load while the Kubernetes cluster auto-scales for
increased load and repairs the damaged zone. This effectively minimizes the impact of these
types of failures.

Database Failing

Another scenario we prepare against is inaccessible data due to database failure. Most of
our data is stored in cloud-native databases, specifically MongoDB Atlas. MongoDB Atlas is
a state-of-the-art cloud-native managed service that provides automatic recovery for most
issues. The database is deployed in a cluster of three nodes each in an independent zone
(separate location and hardware resources) within a cloud region. If any one zone fails, traffic
is automatically redirected to one of the other availability zones. Additionally, MongoDB has
a full support team at the ready should any issue not automatically recover. In a worst-case
scenario that requires a data rebuild, we can restore from a saved data backup.

commercetools’ Resiliency 14

Other Services Failing

Similar to a managed database, we will sometimes leverage other state-of-the-art solutions
from cloud providers (e.g Load Balancers). This ensures that we always have the best
solution to solve the problem and don’t over-burden our engineers with creating an in-house
solution when one already exists. We always ensure that the services deployed deliver high
availability, leveraging multiple cloud availability zones in a region.

Backup Concept

On a high level, a commercetools solution consists of data, infrastructure, and the
application itself. A guiding principle behind our approach is to build solutions that can
function as stateless as possible, as this is a key driver for scalability, reliability, and resiliency.
Consequently, the backup of data is the core element of commercetools’ backup and
recovery plan.

A large segment of our data is persisted within MongoDB databases. Any other data-
handling technology of the platform is dependent on that data. commercetools performs full
database backups with incremental backups in-between. In addition, disk snapshots and hot
incremental backups are performed.

Our practice is to follow the 3-2-1 backup rule, as demonstrated in the image above. This
rule states that we keep at least 3 copies of our data and store 2 copies on different storage
media with 1 of them located offsite. The disk snapshot process is fully automated and occurs
every six hours. We make a full encrypted copy of all persisted data and replicate it across
multiple Google Cloud (GCP) or Amazon Web Services (AWS) regions within the same
compliance geography. Each individual backup is stored for 30 days.

3x

3-2-1 Backup Rule

Maintain at least
3 copies of your data

2x
Keep 2 copies stored at

separate locations

1x
Store at least 1 copy at

an off-site location

commercetools’ Resiliency 15

Recovery Concept

While our backups are performed automatically, the data recovery process is manual. This
is because each individual incident is unique and requires different actions to ensure the
services are appropriately restored. Whatever the incident, we are held to our SLAs for RPO
and RTO to ensure timely restoration of functionality.

In-Region Recovery
As mentioned earlier, we work hard to guard against an issue making it into production. But
in the rare cases that an issue does make it into production, we are able to quickly identify
it and roll back to a previous working version within minutes, often mitigating the problem
before customers are aware or impacted.

If a version roll-back is not an available solution, we may need to create and deploy a fix for
the issue. While the time required to create a fix varies, deployment of the fix can be done
within minutes.

In rare circumstances, a critical issue could require the redeployment of a service within
the region where the issue exists. The complexity of this depends upon the service and will
follow a similar path as multi-regional recovery but isolated to the affected service.

Multi-regional Recovery
At commercetools we can recover to a separate region should the situation demand it. This
recovery would be a multi-phase process. While not all of our products follow the same exact
procedure, below is an example of areas where we can perform a complex recovery in a
separate cloud region.

US-CENTRAL1

EU-CENTRAL1 EU-CENTRAL1-A EU-CENTRAL1-B EU-CENTRAL1-C

US-CENTRAL1-A US-CENTRAL1-B US-CENTRAL1-C

commercetools’ Resiliency 16

It is worth noting that regional outages affect all SaaS applications running within that region,
regardless of the vendor deploying the application. Recovery of our services may not be
enough to restore the functionality of your solution.

•	Data Recovery
We leverage the disk snapshots to expedite the recovery process of customer data. These
snapshots will then be directly converted into a new virtual disk within any region and zone
of the same cloud provider on the same continent and directly attached to a new MongoDB
cluster. Leveraging native cloud services eliminates the need to install or sync any data
during recovery, expediting the overall process.

Any other data, such as platform configuration data, is stored within a Git repository. This
information is replicated live across multiple data centers and is pulled directly into the
newly set up persistence.

•	Infrastructure Recovery
All infrastructure details are managed through Terraform and tracked through Git
repositories. These Terraform files allow for bootstrapping all MongoDB virtual machines,
Kubernetes clusters, ElasticSearch services, and all other resources through the execution
of a Terraform script against the new cloud region.

As part of the regional setup, Terraform specifications are stored in a Git repository that is
replicated live across multiple data centers and tracked. Any deviations from the default
configurations that are needed to run this particular platform are deployed directly to the
new region.

•	Application Recovery
Once all infrastructure is provisioned and the snapshots are converted to virtual disks, the
process of installing the commercetools’ microservices begins.

Deploying the microservices follows an automated process similar to the standard CI/CD
deployment for all changes. During the standard CI/CD process, the deployment retrieves
a set of Helm charts from the commercetools Git repositories. These Helm charts contain
all details on how to deploy a specific microservice along with instance-specific scaling
parameters. Executing these Helm charts includes the following:

commercetools’ Resiliency 17

1.	 Building Docker containers
2.	Sending containers to docker registry
3.	Deploying docker containers to Kubernetes
4.	Configuring Kubernetes

The docker registry backs up all containers to GCP or AWS storage as applicable and
replicates them across all regions. In a disaster recovery scenario, instead of leveraging
these backups, the process bypasses steps one and two. This deployment pattern is
significantly faster when deploying all microservices.

•	Search Recovery
A special case within the commercetools application is Search. Various ElasticSearch setups
are used to drive internal services but also, even more importantly, product search and
Merchant Center services. ElasticSearch is being used as a key technology for that.

The commercetools ElasticSearch indices are derived from the MongoDB product
databases as outlined above. Once the core application, including ElasticSearch, is up and
running, a sync job between MongoDB and ElasticSearch is triggered to rebuild all search
indices.

•	Cutover
The new region will re-use all of the failed regions' projects, configurations, and settings. The
final step will be to route all DNS records to the new instance. This routing takes place within
the cloud provider and does not rely on DNS propagation. The traffic will immediately be
routed to the new installation.

All URLs, Keys, and Secrets will remain. Calling applications will not require modification and
should begin functioning as expected after the cutover. Depending on the implementation
of individual clients, a reboot of those clients may be needed to reconnect.

commercetools’ Resiliency 18

Support

commercetools’ support organization is globally staffed with highly skilled full-time engineers
that provide 24/7 incident communication. commercetools’ support organization provides
our customers with a single point of contact and covers all of commercetools’ products.
Using best-of-breed tooling in an integrated setup of support, SRE, and engineering teams,
automated alerting processes and employee schedules are skillfully managed. Internal
process definition and process automation tooling are continuously improved with learnings
from every incident.

Support Services

We are dedicated to providing our customers with all the support they need to accomplish their
eCommerce goals. In the case of a service interruption, customers can monitor the status of our
products via our status page. This page also allows users to register for proactive notification of
incidents or degradations in their respective hosting Regions. New issues can be reported via our
support portal, which guides the user to ensure the right escalation is immediately triggered.

When problems are detected in individual usage patterns of a tenant through
commercetools’ automated status monitoring processes and on-call rotations, the support
team proactively reaches out to the escalation contact provided by the customer. We
strongly recommend that customers regularly update their emergency contact information
through their Customer Success Manager (CSM).

As part of our culture of continuous improvement, internal incident post-mortem meetings
happen consistently to cover process and technology learnings, which leads to a reduction
of future incidents and further resiliency.

commercetools’ Resiliency 19

Customer’s Role

As with any provided software, there are things that the customer can do to leverage and
improve commercetools’ resiliency:

1.	 Create and maintain an updated list of services and programs that interact with
commercetools and/or online commerce.

2.	Create and maintain a list of dependencies.
3.	Connect with a Customer Service Manager (CSM) regularly.
4.	Document the HA/DR features and specs of all services in the solution.

a. Eg. GCP, AWS, Azure, and MongoDB have built-in HA/DR systems
b. If an external search is used, determine the provider’s fail-safes and plan accordingly.
c. If an external PIM is used
d. If external promotions are used
e. If external discounts are used
f. If there is integration with a CRM, etc.
g. If tertiary services from the frontend are used

5.	Work with CSM and Professional Services to determine which areas might create issues.
6.	Create an internal HA/DR plan of action.

a. Know the built-in backup frequency of each component in the solution
i. Provided backups may not have been designed to be utilized for internally triggered

systemic issues that might cause service interruptions such as accidentally pushing
code with errors

b. The best practice is to augment these backups with an internal backup protocol based
 on individual needs

7.	 Implement regular training on best practices.
a. If a new person is not trained on what to do in the event of an issue, it can:

i. result in errors that exacerbate the situation and possibly cause an outage
ii. significant delays in recovery of service

8.	Create a list of all providers to contact.
9.	Inform all providers including commercetools as soon as possible when a technical issue arises.
10.Update contact information for all vendors quarterly at a minimum.

i. Set up automatic reminders

commercetools’ Resiliency 20

Continued Resiliency

commercetools is continually improving the scalability, availability, and resiliency of our
products. Leveraging modern deployment technologies along with our agile mindset and
processes allow us to deliver updates to all of our customers quickly. Our product-centric
culture strives to ensure all of our products are reliable, highly available, and resilient. We
look forward to building a better eCommerce portfolio for you.

commercetools’ Resiliency 21

Appendix A: Glossary

Availability
APIs and application data are responsive and functioning optimally, typically described in
terms of uptime. CT measures Availability by sending test requests at regular intervals for
the targeted product. CT makes the results of such measurement available at https://status.
commercetools.com.

Active/Active
Two instances of a software product running at the same time. In the event that one goes
down, traffic is automatically routed to the other instance. Least possible losses.

Active/Passive
Two instances of a software product, one running and the other passively updating at
determined increments. In the event of an outage, the passive instance starts up and traffic
is routed to it. Data is current to the last synchronization period. If that sync was 10 minutes
prior to the outage, then 10 minutes will be lost.

Customer Data Backup
The ongoing, frequent, or real-time backup of the Customer’s data which is solely the
responsibility of the Customer.

Disaster Recovery
An organization's ability to respond to and recover from an event that negatively affects
business operations.

Downtime
The percentage of the overall time that the service is not available.

High Availability
The ability of a system to operate continuously without failure for a designated period of time.

Resiliency
The ability of an application to react to problems in one of its components and still provide
the best possible service.

RPO
Recovery point objective. The maximum amount of data – as measured by time – that can be
lost after a recovery from a disaster.

commercetools’ Resiliency 22

https://status.commercetools.com
https://status.commercetools.com

RTO
Recovery time objective. The duration of time and a service level within which a business
process must be restored after a disaster in order to avoid unacceptable consequences
associated with a break in continuity.

System Backup
Backups performed by CT on a periodic basis that are point-in-time snapshots of the
platform and the customer’s data.

Uptime
Percentage of the overall time that a service is running and available (ex. 99.9%).

Appendix B:
Technical Stack Example

While our services are independently developed, we do have common tech stacks. Here is
an example tech stack from one of our services:

Cloud Environments GCP / AWS

Container-Orchestrator Kubernetes (EKS for AWS and GKE for GCP)

Programming Languages Scala

Runtime Environment JVM

Database MongoDB Atlas

Message Service AWS SQS

Testing Framework ScalaTest / Cornichon

CI/CD TeamCity / CircleCI

Monitoring Kibana, Prometheus, Grafana, Pingdom,
Pagerduty

Extra dependencies Akka streams, Cats effect, Unfiltered,
Scalafmt, Scala Steward

commercetools’ Resiliency 23

Europe - HQ
commercetools GmbH
Adams-Lehmann-Str. 44
80797 Munich, Germany
Tel. +49 (89) 99 82 996-0
info@commercetools.com

©2022 commercetools GmbH - All rights reserved

Americas
commercetools, Inc.
324 Blackwell, Suite 120
Durham, NC 27701
Tel. +1 212-220-3809
mail@commercetools.com

About commercetools

The inventor of headless commerce, commercetools is an innovative technology
disruptor that has established itself as an industry-leading eCommerce software provider.
Today, some of the world’s most iconic brands and growth-focused businesses trust
commercetools’ powerful, flexible, scalable solutions to support their ever-evolving digital
commerce needs. As the visionaries leading the modern MACH (Microservices-based,
API-first, Cloud-native and Headless) architecture movement, commercetools provides
customers with the agility to innovate and iterate on the fly, merge on and off-line channels,
drive higher revenue, and future proof their eCommerce business.

Based in Munich, Germany, with offices in Europe, Asia, and the United States,
commercetools is singularly focused on leading a future of limitless commerce possibilities.

More information at commercetools.com.

Contact Us

Munich - Berlin - Jena - Cologne - Amsterdam - Zurich - London - Valencia - Durham NC - Melbourne - Singapore - Shanghai

commercetools’ Resiliency 24

https://commercetools.com/

	Summary
	Basic Architecture
	Cloud Services
	Regions and Availability Zones
	Independent APIs Backed by Microservices
	Database Sharding
	Command Query Responsibility Segregation (CQRS)
	Multi-tenancy
	Cloud Service Security
	Microservices vs. Monoliths: Resiliency Within
	Measures Against Single Points of Failure
	Traffic Overload
	Software Bug or Infrastructure Misconfiguration
	Software Bug
	Infrastructure Misconfiguration

	Stateless Component Failure
	Database Failing
	Other Services Failing

	Backup Concept
	Recovery Concept

	Support
	Support Services

	Customer’s Role
	Continued Resiliency
	Appendix A: Glossary
	Appendix B: Technical Stack Example
	About commercetools
	Contact Us

